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A non-linear planar centrifugally excited oscillatory system was studied in its
steady-state domain. The dynamic behaviour in phase space was analysed by
a model based on the numerical integration of non-linear equations of motion. The
integral of the correlation dimension and Lyapunov exponents were used as
a quantitative measure to describe the motion of the model. The estimates of the
correlation dimension for the values in real phase space and for those obtained by
embedding numerical time histories show good agreement. In addition, the
visualization procedure, as a qualitative measure, shows good agreement with the
results of Lyapunov exponents and the correlation dimension of the model. Power
spectral and bispectral analyses have further been used to analyze the behaviour of
the model in the frequency domain. The dominance of the "rst mode was found,
while other modes have signi"cantly lower power. In the calculated bicoherences
a &&wall'' of values can be seen, which is attributed to the bicoherence's estimated
sensitivity to the division by small number. This sensitivity resulted with an
increase in the number of bicoherence peaks. A new approach to reduce the
number of divisions by small number is proposed and its advantage over those
found in the literature is given.

( 1999 Academic Press
1. INTRODUCTION

The modelling of non-linear dynamics has been attracting increasing attention in
recent years. Modern analytical tools*speci"cally the analyses in the phase space
developed primarily in the basic scienti"c disciplines*are now entering into the
applied technical sciences [1}11]. On the other hand, bispectral analysis is a part of
the rapidly expanding "eld of Higher Order Statistics and can provide information
on the quadratic-type non-linearities in the signal. The two parts of this paper
endeavour to combine both approaches, using them "rstly on a theoretical model
and secondly on real technical application.

Dry friction frequently occurs in real technical systems. Its impact on the
dynamics of the single-degree-of-freedom (d.o.f.) system is shown in references
[1, 3, 4, 12, 13] and on systems with several d.o.f. in references [2, 5, 8}10, 14]. The
22-460X/99/400923#18 $30.00/0 ( 1999 Academic Press
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possibility of using the integral of correlation dimension (ICD) as a mean of
quantitative phase space analysis to interpret aperiodic time series of the system
with dry friction has been shown in reference [2]. Comparisons of the correlation
dimension between the real and reconstructed phase space of the mechanical model
with several d.o.f. have been given in references [5, 8, 10].

Lyapunov exponents represent another measure for estimating the divergence of
trajectories in phase space. They have been used to detect the chaotic behaviour in
single [1] and in several [2, 10] d.o.f. models.

The statistical stability of the bispectrum estimate is achieved by dividing
the time series into the segments for averaging. Because the variance of the
bispectrum estimate is dependent upon the second order properties [15}17], the
bispectrum is normalized into the skewness function [15] or bicoherence [18].
When normalizing, attention should be paid to the problem of division by small
numbers. One way of dealing with this problem is to add a low-level white
Gaussian noise to the signal [18]. In this paper, both the numerator and the
denominator of the bicoherence estimate are compared to the numerical threshold
for zero value, thus allowing for a check on the possibility of dividing by small
number.

In the experimentation, a washing machine was used as the application from the
real engineering world. The washing machine's suspension optimization was
conducted [14] on the washing complex modelled as a rigid body with 6 d.o.f. The
aims were orientated towards several directions. Firstly, it was desired to apply
some modern analyses from the non-linear dynamical systems. In the literature, it is
seldom found that the dynamics is simultaneously studied in both the real and the
reconstructed phase spaces. In addition, an experiment was conducted which
enabled estimations to be made of the same measures as in the theoretical
modelling, and also in a pair of measured time histories. Secondly, the estimation of
bicoherences serves as an additional mean when deciding how to model the system,
simultaneously to the phase space estimation.

Finally, the intention was to compare the results of the theoretical modelling of
the washing machine's washing complex dynamics, as described in Part I of this
paper, with the measured responses in the time, frequency and phase-space
domains as described in Part II.

2. DESCRIPTION OF THE MODEL

The model (see Figure 1) consists of two rigid bodies. The "rst rigid body, with its
centre of gravity at point T, is called the basic body. Its links to the surroundings
consist of a bilinear spring support, linear viscous damper and element with
implemented dry friction. All of the elements of vibroisolation are collinear with the
axis of the co-ordinate system X}>. The second rigid body, with its centre of
gravity at point ¹

e
, is called the rotor. It is driven by torque M(t) and attached to

the basic body by bearings at point S.
The model has four degrees of freedom. Co-ordinates x, y and u are needed to

determine the motion of the basic body. The x and y describe the horizontal and



Figure 1. The model.
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vertical translation of the basic body, respectively, and u describes its rotation. To
characterize the rotation of the rotor the additional co-ordinate t is used. The
u and the t start at X-axis. In order to obtain equations of motion, the Lagrangian
equations of second order were used; the motion takes place in con"guration space,
hence q

1
"x, q

2
"y, q

3
"u, q

4
"t and so

d
dt

L¹
LqR

j

!

L¹
Lq

j

"Q
j
!

L<
Lq

j

, j"1,2 , 4, (1)

where ¹ denotes the kinetic energy, < the potential energy and Q
j
are generalized

non-conservative forces. The de"nitions of the functions used are

h
xi
"u

Ai
cosu!v

Ai
sinu, h

yi
"v

Ai
cosu#u

Ai
sinu,

(2)
t
x
"u

T
cosu!v

T
sinu, t

y
"v

T
cosu#u

T
sinu,

where the u's and v's are depicted in Figure 1. The kinetic energy of the system can
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and the potential energy as
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where ¸
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The generalized non-conservative forces consist of the driving torque, friction
forces and viscous damping forces. The torque is given by

M(t)"atb, a'0, b(0, (6)

and represents the driving force of the model, re#ecting the real characteristics of
the electromotor. The friction forces are given according to the discontinuous
Coulomb model of dry friction as

F"Nk
k
sgn(l), (7)

where N denotes normal force on the surface, F the friction force, l the relative
velocity between surfaces in contact, and k

k
the kinetic coe$cient of friction.

The excitation is modelled as non-ideal and not explicitly time dependent; hence
the model is autonomous.

The parameter identi"cation was done mostly by experimentation and is
described precisely in reference [8]. Hence, the parameters of the vibroisolation
were determined experimentally in both horizontal and vertical directions.
Consequently, the chosen con"guration of the suspension simply follows the
experimental approach. The details of the model's parameters can be found in
Table 1.

3. THE RESULTS OF NUMERICAL SIMULATION

The set of four equations of motion (1) was transformed into a system of eight
ordinary di!erential equations of "rst order. The numerical integration of the latter
was carried out with the Runge}Kutta method with error estimation of O (h5),
where h denotes the constant integration step. The numerical integration always
starts at the same initial conditions, which are de"ned by stable static equilibrium
and zero velocities . For a certain set of geometrical and material parameters of the
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Figure 2. Numerically integrated time histories of accelerations; a
x

(==) is horizontal and a
y

(**) vertical acceleration.
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model, the time histories of accelerations in horizontal (x) and vertical (y) directions
are presented in Figure 2. The time histories of integrated accelerations show that
the motion of the model has one dominant frequency; hence the frequency of spin
dry. The signals of accelerations in horizontal and vertical direction are shifted by
n/2; hence the model's response follows the centrifugal excitation.

3.1. SPECTRAL ANALYSIS

Upon assuming that x (n), n"0,$1,$2,2 , is a real, stationary and random
process, the discrete third order cumulant spectrum or bispectrum B (2nf
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where c
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) is the third order cumulant of x (n). The alternative approach is to

construct a consistent bispectrum estimate BK by using the DFT X(k) of a signal
x(n), n"0, 1,2 , N!1 [15]. When using this technique, the signal of length
N points is subdivided into K segments having M points (N"K )M). The DFT of
each segment is calculated and averaged over K segments:
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Here k
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denote the indices of frequency, i is the index of the segment and X*
is the complex conjugate of X. If the highest frequency component f
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The variance of the bispectrum estimate for stochastic processes can be estimated

by using the expression [15]
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where P denotes the power spectrum. The bispectrum estimate is therefore sensitive
to both second and third properties. To eliminate the sensitivity of the bispectrum
estimate to second order properties, a new measure called the skewness function
was introduced [15]. However, for the bispectra of signals, conforming to the
cosine model [16, 18],
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an alternative normalization called bicoherence is often used [17, 21]:
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Figure 3. The principal domain of the discrete bispectrum.
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In equation (11), A
i
and /

i
denote random amplitude and random phase, generated

at the beginning of each segment, and f
i
denotes the frequency of the ith mode.

One useful property of the bicoherence is that it is bounded between zero and
unity, a property which the skewness function does not share. The bicoherence
bL (k

1
, k

2
) can be interpreted as a portion of power due to the quadratic phase

coupling (QPC) of frequency components k
1

and k
2

[17]; thus when QPC takes
place bicoherence should be close to unity. To distinguish between low, but
non-zero, bicoherence values and truly zero bicoherence values, the minimal
signi"cant value of the bicoherence must be calculated,

bL 2
sig.

"!

ln(1!¹a%)
K

, (13)

where ¹a% is the signi"cance in %. The bL 2
sig.

is based on the assumption that
the process involved is Gaussian, in which case the bicoherence should be
approximately s2 distributed with two degrees of freedom [22].

When dealing with signals conforming to the sinusoidal model, the assumption
of phase randomization between various sinusoidal components is assumed. If the
phases of the various sinusoidal components are constant for all segments,
bicoherence can peak even if no QPC takes place [18]. To overcome this problem
Fackrell proposed testing the phase of the bispectrum. It was shown [18] that in the
case of QPC, the phase of the bispectrum is zero. If the phase of the bispectrum is
approximately normally distributed around the true phase [21], the maximal phase
for a given signi"cance level ¹h% can be determined. The ¹h% is determined from the
standard normal tables N(k,p), where k denotes mean value and p a standard
deviation:
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Thus, only the bicoherence values greater than equation (13) and lower than
equation (14) are considered for QPC detection.

The power spectra were calculated by using 4096 FFT points per segment.
Overlapping of 5% was used to obtain 128 segments and the Hamming window
was applied in the time domain. The power spectra of horizontal and vertical
acceleration are presented in Figures 4 and 5. In the horizontal direction the spin
dry frequency of 17)57 Hz is clearly visible. All other frequencies contain
signi"cantly lower power. In the vertical direction, Figure 5, the spin dry frequency
of 17)57 Hz and its higher harmonics at 52)73 Hz (3]) and 87)4 Hz (5]) can be
extracted. All other frequencies have a power lower than !70 dB. It is interesting
to note that only odd harmonics appear. This is due to the fact that the signal meets
the requirement of symmetry of the third kind in Fourier analysis.

The bicoherences of horizontal and vertical accelerations were calculated using
1024 FFT points per segment, giving a frequency resolution of 1)95 Hz.
Overlapping of 5% was used to obtain 513 segments for averaging. Because of its
ability to resolve QPC peaks [18, 23] the Hamming window was applied in the



Figure 4. Power spectrum of horizontal model's acceleration.

Figure 5. Power spectrum of vertical model's acceleration.
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time domain. The number of segments and the selected signi"cance level of
¹a%"95% de"ned the minimal signi"cant bicoherence value of 0)0058. The
signi"cance level of ¹h%"95% was used to determine the maximal allowed phase
of the bispectrum. The bicoherences of horizontal and vertical acceleration are
presented in Figures 6 and 7. In both "gures, a &&wall'' of bicoherence values +0)35,
+0)23 is clearly visible. This is the result of the normalizing process. When
normalizing, the bispectrum is divided by the power spectrum and by another
factor; see equation (12). When the denominator is small, the problem of the
division by a small number occurs and can result in high bicoherence values.
Because of the division, the bicoherence can peak even if the numerator is very
small or close to zero. One must bear in mind that the bicoherence gives the
proportion of the power due to the QPC of components k

1
and k

2
, irrespective of

the power of these two components. If there is a large amount of QPC between



Figure 6. Bicoherence surface plot of horizontal model's acceleration.

Figure 7. Bicoherence surface plot of vertical model's acceleration.
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frequencies with small power, the QPC between frequencies with high power would
be among the large number of high bicoherence values. In other words, no matter
how small may be the power of components k

1
and k

2
, if the phases of these two

components quadratically couple, the bicoherence exhibits a peak. The question is:
should the bicoherence peak if the power of the components k

1
and k

2
is

signi"cantly lower than the power of the largest components? If the power
spectrum is composed of several distinct high values and has virtually no power
elsewhere, the problem of the division by small number can occur even more often.
One way of tackling this problem is to add low-level white Gaussian noise to the
signal [18]. This ensures that there is always some power in the spectral component
at each frequency, and so even if the bispectrum is zero, the denominator is always
greater than zero. The drawback of this approach is that it reduces the bicoherence
values.

In this paper an alternative approach to determining the numerical threshold for
zero value has been implemented. Whenever the numerator is smaller than this
threshold the bicoherence is set to zero. If the numerator is greater, and the
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denominator smaller than this threshold, a small, constant and positive value is
added to the denominator. By increasing the numerical threshold the number of
divisions by small number is decreased. However, it is di$cult to determine when to
stop increasing the numerical threshold.

In order to compare both approaches, the bicoherence of the vertical
accelerations has been estimated twice: "rst on a signal with added Gaussian noise
with zero mean value and 0)5 variance,2 SNR"29 dB (called case a), and second
on a signal without added Gaussian noise but with 1E-10 as a numerical threshold
for zero value (called case b). The numerical threshold of 1E-10 is 182 dB smaller
than the maximum value of the magnitude bispectrum of the vertical accelerations
with no noise added; see Table 2. The case a, the number of the peaks in the
wall decreased as did the values of the bicoherence. The &&wall'' however
remained; see Figure 8. Applying only numerical threshold for zero value of 1E-10,
case b, resulted in a great reduction in the number of bicoherence peaks: the &&wall''
could hardly be distinguished, while the highest bicoherence value only slightly
decreased (+0)22); compare Figures 7 and 9. Moreover, some of the highest peaks
in the bicoherence, see Table 3, were at the same frequency as the peak of the
magnitude bispectrum, see Table 2. The e!ectiveness of the approach is clearly
evident.

The magnitude bispectra of both horizontal and vertical accelerations have
also been calculated. For both accelerations only QPC at (17)57, 17)57) Hz were
TABLE 2

Magnitude bispectrum values for horizontal and vertical accelerations of the model

Horizontal accelerations Vertical accelerations

0)21 at (17)57, 17)57) (Hz) 0)13 at (17)57, 17)57) (Hz)

Figure 8. Bicoherence surface plot of vertical model's acceleration. Gaussian noise with zero mean
value and variance 0)5 was added to the signal.



Figure 9. Bicoherence surface plot of vertical acceleration-model. No added Gaussian noise.
Numerical threshold for zero value was 1E-10.

TABLE 3

Bicoherence values of vertical model1s accelerations. Numerical threshold for zero
value 1E-10

Frequency (Hz) (17)57, 17)57) (52)73, 35)17) (87)89, 35)17) (332)03, 35)17)

Bicoherence 0)221 0)221 0)221 0)222
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found; see Table 2. Thus, the QPC of the basic harmonic partly generates second
harmonics, the power of which is here negligible; see Figures 4 and 5.

The magnitude bispectra were calculated because it has been found useful to
check magnitude bispectrum for QPC [23] when the number of bicoherence peaks
is large. This is due to the fact that no division is needed to calculate the bispectrum,
thus eliminating the problem of division by a small number. However, the
statistical stability of the bispectrum estimate requires that the bispectrum's
number of degrees of freedom be larger than 120 [18, 23].

3.2. PHASE-SPACE ANALYSIS

Although the integration of the full set of equations of motion allows one to
create the real phase space, interest here lies also in the reconstruction process
[24, 25] on the basis of a single numerically integrated time history of the system's
dynamics. From a single measured time history q (t), one can create delay vectors

X(t)"Mq(t), q(t!q),2 , q (t!(d!1)q)N , (15)

where q is the delay time and d is the embedding dimension. In order to "nd the
appropriate delay time for the embedding procedure, the autocorrelation function
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of the time history q(t) was calculated and for the value of q the "rst decorrelation
time was taken into account.

3.2.1. Correlation dimension

To characterize the dimensionality of an attractor in real as well as in
reconstructed phase space, the integral of correlation dimension (ICD) was
estimated. It is de"ned as [26, 27]

ICD(N, ¸)"
2

N(N!1)
N~1
+
i/1

N
+

j/i`1

H(¸!EX
i
!X

j
E) , (16)

where N denotes the number of points of the phase space, H is the Heaviside
function, ¸ the characteristical length and EX

i
!X

j
E denotes the distance between

two points X
i
and X

j
of the phase space. This distance can be de"ned as

EX
i
!X

j
E"max D (X

i
)
k
!(X

j
)
k
D, k"1,2, d. (17)

It has been shown [26, 27] that for most chaotic attractors and for small ¸-s ICD
scales like

ICD(N, ¸)J¸l , (18)

where l denotes the correlation dimension of the attractor in d-dimensional phase
space.

The extraction of the correlation dimension in the real phase space of the model
resulted in an estimate for the correlation dimension where l"1)00$0)00; see
Figure 10. It was then possible to compute the integrals of correlation dimension
after forming delay vectors from a single numerically integrated time history. For
Figure 10. Integral of correlation dimension, real phase space of the model.



Figure 11. Integral of correlation dimension, reconstructed phase space on vertical acceleration of
the model. d values: *r* 3; *m* 9; *j* 15.

TABLE 4

Estimation of the correlation dimension of the model based on di+erent numerically
integrated time histories

l Displacement Velocity Acceleration

Horizontal direction 1)15$0)01 1)03$0)00 1)04$0)00
Vertical direction 1)09$0)01 1)03$0)00 1)06$0)01
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vertical acceleration, the integrals of correlation dimension for the three embedding
dimensions are shown in Figure 11. The values of the correlation dimension
estimates for the di!erent time histories are shown in Table 4. They di!er from 3 to
15% compared with those obtained in real phase space. The most signi"cant
di!erence between real and reconstructed phase space in the correlation dimension
estimation is found in horizontal displacement due to decaying transient vibrations
visible only in this signal [8]. This results from the inherent property of the driving
torque model that was used to model the electromotor characteristics. The driving
torque reaches zero value at in"nity, and consequently the rotational speed reaches
maximum value at in"nity. Hence, the model never really reaches the steady state in
the very strict theoretical sense, but after some time the growth of velocity becomes
negligible from the technical point of view.

In the case of the real phase space, 10,000 points were used; see Figure 10. All of
the results in Table 4 and plots in Figure 11 are based on a computation using 5000
points [28] when reconstructing the phase space.

3.2.2. ¸yapunov exponents

The Lyapunov exponents measure the exponential divergence (positive
exponents) or convergence (negative exponents) of two initially neighbouring
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trajectories in the phase space; hence the chaotic or regular behaviour of the system
under consideration could be detected [24, 29}31]. One can monitor the long-term
evolution of in"nitesimal n-dimensional sphere of initial conditions in
n-dimensional phase space. The sphere will become an n-dimensional ellipsoid. The
ith Lyapunov exponent in n-dimensional phase space is de"ned [31] as

j
i
"lim

t?=

1
t

ln
p
i
(t)

p
i
(0)

, i"1,2, n, (19)

where p
i
(t) is the length of the ellipsoid principal axis and p

i
(0) is the length of the

in"nitesimal sphere's axis. If at least one of the Lyapunov exponents is greater than
zero, then the system exhibits chaotic dynamics.

The technique [31] for computing the complete Lyapunov spectrum of
exponents directly from explicitly known equations of motion has been used. The
method calculates the Lyapunov spectrum by numerical integration of n non-linear
equations of motion for some post-transient initial conditions and the n linearized
equations of motion for n di!erent initial conditions that de"ne the arbitrary
co-ordinate system de"ned by n orthonormal base vectors. Because of the
exponential divergence of trajectories of the chaotic system, each base vector will
diverge in magnitude and tend to fall into a local direction of most rapid growth,
the Gram}Schmidt reorthonormalization [31] procedure should be used
repeatedly.

The largest Lyapunov exponent was estimated as j
max

"!0)68; see Figure 12,
hence the model's motion is regular and the model's attractor is a limit cycle.

3.2.3. Attractor visualization

The attractor visualization enables one to visualize the attractor's shape in such
a way that a trajectory in the phase space is presented in the Euclidean space of the
Figure 12. Convergence of the model's largest Lyapunov exponent.



Figure 13. Visualization of the model's plane motion.

Figure 14. Visualization of the model's attractor reconstructed from the vertical velocity time history.
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same dimension. The major drawback of the method is that one is able only to
present three-dimensional objects. In the case of multi-dimensional phase space,
one could present the attractor's shape in the form of two- or three-dimensional
slices of multi-dimensional Euclidean space.

The cross-section of real phase space of the time history of co-ordinates x and
y presents an in-plane motion of the model's point S during spin dry; see Figure 13.

The visualized attractor reconstructed from the vertical velocity time history in
three-dimensional space, d"3, is shown in Figure 14.

Each of the visualizations suggests that the model's attractor is likely to be the
limit cycle.

4. CONCLUSIONS

In this paper the steady state responses, extracted from the non-linear
centrifugally excited planar oscillatory system were studied. The work is aimed at
"nding a better understanding and modelling of non-linear behaviour in machine
dynamics.
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Concentration has been on the planar model of the washing-machine washing
complex due to its negligible motions of the washing complex in the direction
perpendicular to the plane of motion.

The computation of the correlation dimension of the real phase space and
reconstructed phase space, based on di!erent simulated time histories, has been
carried out. The correlation dimension of the model's real phase space and of the
reconstructed ones shows good agreement even though the model never really
reaches the steady state in the very strict theoretical sense, but after some time the
growth of velocity becomes negligible from the technical point of view. This
phenomenon is the consequence of the torque model used, and is re#ected in the
slightly higher estimation of the correlation dimension from the signal of the
horizontal displacement due to decaying transient vibration. The estimated values
of correlation dimension of the model's attractor point towards the limit cycle as
being the attractor's shape.

The estimated negative value of the largest Lyapunov exponent, computed
directly from explicitly known equations of motion, is re#ected in the model's
regular nature of motion.

It is impossible to visualize the complete model's attractor on account of its
eight-dimensional phase space. The visualization of the section of the real phase
space and the sections of the reconstructed one reveals the attractor as a limit cycle,
thus showing good agreement with visualizations of the model's real phase space
and of the reconstructed ones.

Each of the phase-space analyses conducted con"rms that the model's dynamics
is regular and that its attractor is a limit cycle.

The power spectral and bispectral analysis was used next to analyse the
dynamical model of the washing complex. The dominance of the "rst mode has
been found, while other modes have signi"cantly lower power values. When
calculating bicoherences, attention should be paid to the sensitivity to division by
small numbers. This sensitivity can greatly in#uence the calculated results. In this
study, this e!ect was interpreted as the main reason behind the large number of the
bicoherence peaks (&&wall''). To overcome this problem other authors have
proposed adding Gaussian noise to the signal. However, this resulted in lower
bicoherence values.

An alternative approach has been proposed here. A numerical threshold for zero
value was introduced, and both numerator and denominator were checked for near
zero values. If the numerator was lower than this threshold, bicoherence was set to
zero. If the numerator was greater than the threshold, the denominator was
checked for the possibility of division by small number. If it was smaller than the
threshold, a small positive constant was added. This approach signi"cantly reduced
the number of divisions by a small number.
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